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ABSTRACT 

 
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most 
experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured 
velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence 
flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models 
cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and 
their fluctuations are attractive alternatives.  However, this approach is a challenging one especially for high spatial 
resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor 
including an EDM machined floating plate and a high-resolution laser optical encoder.  Tests were performed both in air 
as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were 
measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper. 
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1. INTRODUCTION  
The flow fields and boundary erosion that are associated with scour at bridge piers are very complex. In particular, 

scour development is complicated by the important effects of large scale turbulence structures (macro-turbulence) that 
markedly characterize pier flow fields. The role that such turbulence structures play in scour has only been partially 
appreciated. It is a role that needs to be very well-understood when investigating scour at bridge piers. Turbulence 
structures, together with local flow convergence / contractions around the fronts and flanks of piers, or between piles of 
complex pier configurations, are erosive flow mechanisms of primary importance. The interactions of macro-turbulence 
structures with themselves and converging flows are of key significance in illuminating how pier geometry affects 
sediment entrainment and thereby scour morphology and maximum scour depth. The measurement of shear stress has 
applications in many other problems including the performance and transportation vehicles and surface flow 
characterization [Naughton and Sheplak, 2002]. 

Most researchers have applied an indirect process to determine shear stress using precise measured velocity profiles. 
Laser Doppler Anemometry and Particle Image Velocimetry are common techniques used to accurately measure 
velocity profiles. These methods are based on theoretical assumptions to estimate boundary shear stress. In addition, 
available turbulence models cannot very well account for the effect of bed roughness which is fundamentally important 
for any CFD simulation. Yucel and Graf [1975] developed a method to determine the shear force in a sand-water 
mixture flow by measuring the voltage required to maintain a flush-mounting hot-film at constant temperature. Qu et al 
[2008] determined the shear force by measuring the resistance of a carbon nanotube. Tunga et al [2007] used a similar 
method and a sensor based on laterally aligned carbon nanotubes. Große et al [2006] used elastomeric cylindrical pillars 
with a diameter of a few microns and a high speed CCD camera to measure pillar's tip deflection.  

Direct measurement boundary shear stress and boundary pressure fluctuations in experimental scour research has 
always been a challenge and almost impossible. This method measures the displacement of a plate due to shear force 
developed in contact with a flow. Akasofu and Neuman [Akasofu, 1991] used the change of the capacitance of a 
capacitor bridge to measure the deformation of a silicon gel layer due to shear force. This is relatively simple solution, 
small scale and easy to seal but the sensitivity, electric shielding and material stability raise issues regarding its use. 
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Table: 3 Summary and comparison of the data of sensor #3 in the four runs: 

Run  Average (Pa)  /(2‐4 Ave.)  STD (Pa)  /(2‐4 Ave.) 

1  7.17  1.34  0.74  1.23 

2  5.43  1.02  0.62  1.03 

3  5.09  0.95  0.61  1.01 

4  5.53  1.03  0.58  0.96 

2‐4 Average  5.35     0.60    
 
Figures 9 is the corresponding power spectrums density (PSD). The frequency resolution is ~0.1 Hz (50/512 Hz). These 
curves are similar in general. 
 

   
         Run 1           Run 2 

 

   
         Run 3           Run 4 
Figure 9: The power spectrums density (PSD) of sensor #3 from four sequential runs.  

5. SUMMARY 
A novel sensor was developed for direct measurement of shear stress in turbulence water flow. The sensor uses high 

resolution optical encoder to measure the displacement of small floating plate through a glass window. Relatively high 
spacial resolution and broad bandwidth were achieved. The possibility to form a compact sensor array was demonstrated. 
Making the sensor more robust and improve the ratio of signal to other interferences from thermal environment change, 
pressure change is the future work. 
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